变频器的社会调查
调查对象:变频技术的发展及其应用调查时间:寒假期间
调查方法:工厂,介绍,相关资料,上网了解
变频技术以及电力电子技术是当今发展最快的技术之一,除了在工业、交通领域(如地铁交通车辆、磁悬浮高速列车等)具有举足轻重的地位外,还在民用,如变频空调、变频冰箱、变频洗衣机等产品中担当重要的角色。20世纪90年代开始,交流变频调速装置在我国的应用有了突飞猛进的发展。由于变频调速在频率范围、动态相应、调速精度、低频转矩、转差补偿、通讯功能、智能控制、功率因数、工作效率、使用方便等方面是以往的交流调速方式无法比拟的,它以体积小、重量轻、通用性强、拖动领域宽、保护功能完善、可靠性高、操作简便等优点,深受钢铁、冶金、矿山、石油、石化、化工、医药、纺织、机械、电力、轻工、建材、造纸、印刷、卷烟、自来水等行业的欢迎,社会效益非常显著。在变频领域,我公司起步较早,销量较大,应用负载较多。可以说,伴随着我国变频技术成长。变频器是运动控制系统中的功率变换器。当今的运动控制系统包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的.
1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。
变频技术的发展过程
变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代后半期开始,电力电子器件从SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制品闸管)发展到今天的IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管),器件的更新促使电力变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM—VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并广泛应用。
VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,因此人们又研究出矢量控制变频调速。
矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic、通过三相—二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
感应式交流电机(电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。变频调速已被公认为是最理想、最有发展前途的调速方式之一,采用通用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。
正确选择通用型变频器对于传动控制系统能够的正常运行是非常关键的,首先要明确使用通用变频器的目的,按照生产机械的类型、调速范围、速度响应和控制精度、起动转矩等要求,充分了解变频器所驱动的负载特性,决定采用什么功能的通用变频器构成控制系统,然后决定选用哪种控制方式最合适。所选用的通用变频器应是既要满足生产工艺的要求,又要在技术经济指标上合理。若对通用变频器选型、系统设计及使用不当,往往会使同用变频器不能正常运行、达不到预期目标,甚至引发设备故障,造成不必要的损失。另外,为了确保通用变频器长期可靠的运行,变频器地线的连接也是非常重要的.
变频技术技术现在与我们的家用电器已经紧密的结合起来。
20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调器、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等。
20世纪90年代后半期,家用电器则依托变频技术,主要瞄准高功能和省电。比如,要求具有高速高出力、控制性能好、小型轻量、大容量、高舒适感、长寿命、安全可靠、静音、省电等优点。
首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引起的噪声,节能效果更加明显。
其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的空调器已采用无刷直流电动机实现变频调速,其节能效果较交流异步电动机变频又提高约10%—15%。为了进一步提高装置的效能,近年来,日本的空调器又逐步从单纯的PWM控制改为PWM十PAM混合控制方式。即较低速时采用PWM控制,保持U/f为一定;当转速大于一定值时,将调制度固定在最大值附近,通过改变直流斩波器的导通占空LL,提高逆变器输入直流电压值,从而保持变频器输出电压和转速成比例,这一区域称为PAM区。采用混合控制方式后,变频器的输入功率因数、电机效率、装置综合效率都比单独PWA4控制时有较大幅度的提高。
近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现大幅度时快速冷冻;在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声;IH电饭堡得到的火力比电加热器更强,而且利用变频可以进行火力微调,只要合理设计加热感应线圈,可得到任意的加热布局,炊饭性能上了一个档次;变频微波炉利用高频电能给磁控管必要的升压驱动,电源结构小,炉内空间更宽敞,新式微波炉能任意调节电力,并根据不同食品选择最佳加热方式,缩短时间,降低电耗;照明方面,荧光灯使用高频照明,可提高发光效率,实现节能,无闪烁,易调光,频率任意可调,镇流器小型轻量。
变频技术正在给形形色色的家电带来新的革命,并将给用户带来更大的福音。今后变频技术还将随着电力电子器件、新型电力变换拓扑电路、滤波及屏蔽技术的进步而发展。家用太阳能发电系统还将给家电增添新的能源。
另外变频技术在工业上也得到了充分的应用。
如,在 冶金电力煤炭化工等行业,给料机众多,无论圆盘给料机,还是振动给料机,采用变频调速,效果均非常显著。如圆盘给料机,原为滑差调速,低频转矩小,故障多,经常卡转。采用变频调速,由于是异步机,可靠性高、节电,更重要的是和温度变送器闭环控制可以保证输送物料的准确,不至于使氧化剂输送过量超温而造成事故,保证了生产的有序性。堆取料机是煤场、码头、矿山堆取的主要设备,主要功能是堆料和取料。老式的堆取料机,其堆料和取料均为手动操作,生产效率低,工人劳动强度大。经过改进采用变频调速。实现自动堆料和半自动取料,提高了设备可靠性,设备运行平稳,无冲击和摇动现象,取料过程按1/cos∮规律回转调速,提高了抖轮回转取料效率和皮带运煤的均匀度,很受工人欢迎。另外,化工、医药行业搅拌机非常之多,采用变频调速取代其他调速方式,好处特多。发酵罐电机原为齿轮调速,如遇搅拌速度变化需拆卸三角皮带,即笨重又不安全。该用变频调速后,可以大量节约电能,发酵过程可以得到明显好转,提高了产品质量,减少了维修,减少了工人劳动强度,有益于工厂,有益于工人。
随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,以后变频器的发展将朝着智能化方向发展,在将来的工业中将起着巨大的作用。
页:
[1]